
• handle Source issues (especially from plots people have to cycle through)

1 Purpose

• Create a scatterplot in GGPlot
• Modify the scatterplot using components
• Add a second plot

The script for this lesson is here
The Lansing2016Noaa.csv is here

2 GGPlot package

We are going to use the GGPlot package so we need to add the ggplot2 library to the script.

The second line gives your script access to all of the functions in the GGPlot2 package. Note: ggplot2 is
technically the third version of GGPlot – but no one uses the first two versions (ggplot and ggplot1) anymore.

The script files for lessons in this class that contain plots will have the GGPlot presented in the lesson and, in
comments, the R-base plot equivalent. The plan is to eventually add a lesson about R-base plots but, until then,
the R-base plots are there FYI.

3 GGPlot components and subcomponents

For many years, RBase was the main plotting tool in R. Rbase was loosely based on the metaphor of drawing
plots on a transparency. GGPlot is based more on a building metaphor.

The full list of functions in the GGPlot package is here:
https://ggplot2.tidyverse.org/reference/

2-01: GGPlot Introduction

0.1 To-do

1.1 Code for the lesson

rm(list=ls()); # clear the Environment tab

library(package=ggplot2); # include all GGPlot2 functions

2.1 R-base plots

https://qfcatmsu.github.io/FundProgUsingR/scripts/2-01_GGPlot_Intro.R
https://qfcatmsu.github.io/FundProgUsingR/scripts/2-01_GGPlot_Intro.R
https://qfcatmsu.github.io/FundProgUsingR/data/Lansing2016Noaa.csv
https://qfcatmsu.github.io/FundProgUsingR/data/Lansing2016Noaa.csv
https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/

In GGPlot, one way to think about the functions is that they are components of a plot. Each time you call a
GGPlot function, you are either adding a component to a plot or modifying an existing component. For this
class, I refer to the functions in GGPlot as components.

The arguments within the functions can be thought of as subcomponents of the components.

A helpful R resource is the cheat sheets, which exists for many popular packages – the cheat sheet for GGPlot2
is on this page:
https://rstudio.github.io/cheatsheets/html/data-visualization.html

4 Create plot data using GGPlot

We are going to create a scatterplot in GGPlot using data from Lansing2016NOAA.csv

The scatterplot will be average temperature (avgTemp column) vs. humidity (relHum column).

The code to create a scatterplot using GGPlot is:

Source the script and this plot appears:

read in CSV file and save the content to weatherData

weatherData = read.csv(file="data/Lansing2016NOAA.csv");

Part 1: Create a scatterplot ####

plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

https://rstudio.github.io/cheatsheets/html/data-visualization.html
https://rstudio.github.io/cheatsheets/html/data-visualization.html

Below, the argument names are highlighted:

We can remove the argument names and, in this case, the script will render the same plot:

Figure 1: Our first plot using GGPlot – note that the x and y-axis labels match the mapped name

4.1 Taking out argument names

Figure 2: Argument names used in ggplot call

Part 1: Create a scatterplot

plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

Part 2: Same scatterplot without argument names

plot2 = ggplot(weatherData) +

geom_point(aes(avgTemp, relHum));

plot(plot2); # same as plot1

You will often see people skip the argument names and, for the example above, this works. But it only works
because we only used the default arguments for each function and used the arguments in the same order as
they appeared in the function.

In this class, we will (almost always) use argument names because using argument names:
• makes the code more intuitive to the reader – and making code more intuitive should (almost always) take

precedence over saving space
• means that you can order the arguments however you want
• avoids bad assumptions about the ordering of arguments and their default values

The one exception where we will not use argument names is:

instead of

Figure 3: Taking out argument names, in this case, produces the same plot

4.2 Benefits of using argument names

plot(plot1) # no argument name used here

There are multiple functions in R and GGPlot where x is used as the first argument name in a function, and it
often refers to the data being passed in to the function. This is not intuitive when plotting because x is also
used to refer to x-axis data.

We will use the argument name x when x refers to an axis (e.g., x=avgTemp) but not when x refers generically
to data (e.g., x=plotData) as shown in Figure 2.

5 Components of a GGPlot

Let’s take a more detailed look at the three lines of code that created the scatterplot.

The function ggplot() creates a canvas area where all the components will be drawn. The argument data gives
the data that will be used by the components, which is set to the data frame weatherData:

Next, we add the scapperplot component geom_point(), and map the x and y axis to the avgTemp and
relHum columns from weatherData:

The canvas, which contains a scatterplot, is saved to a variable named plot1:

note: plot1 is a List variable – List variable will be covered in a later lesson

And then plot() is used to display the canvas saved in plot1:

plot(x=plot1) # x is the argument name

plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

5.1 GGPlot components

In GGPlot, you initialize a canvas and then add components to the canvas. The (+) symbol is used to add
components, and you can string multiple components together. In the above example, there is the canvas
initialization function, ggplot(), and one component, geom_point():

1) ggplot() is used to initialize a GGPlot canvas with the data from weatherData:

2) geom_point() is a plotting component that creates a scatterplot

Most plotting components in GGPlot contain a subcomponent called mapping. mapping describes the
relationship between the data and the plot. Or, another way to put it, mapping describes what data gets
represented on the plot (in the above case, avgTemp and relHum) and how the data gets represented
(avgTemp on x-axis, relHum on y-axis):

The mapping is set to a mapping element called an aesthetic (aes). The concept of an aesthetic comes into
play when we are generating legends and creating data categories, which is a topic we delve much deeper into
in the GGPlot class.

6 Adding more components to the canvas

Let’s say we want to make the three following modifications to the plot:
1. add a title and change the axes labels
2. change the numeric tick marks on the y-axis
3. change the direction of the x-axis labels

To do this we will add three new components to the canvas:
1. labs() – label component
2. scale_x_continuous() – x-scaling component (there is a corresponding y-scaling component)
3. theme() – theme component

We add components using (+) and subcomponents are the arguments within the components:

plotData = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plotData = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

5.2 GGPlot mapping and aesthetics (aes)

plotData = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

Part 3: Adding components to the plot

Trap: Putting the (+) on the next line

And plot3 includes the three new components:

plot3 = ggplot(data=weatherData)

+

geom_point(mapping=aes(x=avgTemp, y=relHum))

+

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity")

+

scale_x_continuous(breaks = seq(from=10, to=80, by=10))

+

theme(axis.text.x=element_text(angle=90, vjust=0.5));

plot(plot3);

Figure 4: Scatterplot with a few added components

6.1 The Components in detail

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

When we search in the Help tab for labs() (Figure 5) we see that it has many subcomponents (or arguments)
including:
• label: the title
• subtitle: a secondary title

A couple of notes about the information in the Help:
• There are many ways to add axes labels, labs() sort of merges all of these methods into one component.

Because of this, the Help section does not explicitly show the x and y arguments (although, the examples
below do). This is one area where the Help could do a better job reflecting the functionality of a function.

• waiver() is the default value given by the plotting function.

y = "Relative Humidity") +

Figure 5: Using the Help tab in RStudio to find info about GGPlot components

scale_x_continuous(breaks = seq(from=10, to=80, by=10))

scale_x_continuous() is the component used when you want to modify an x-axis that has continuous values.
There are many subcomponents (Figure 6) that can be changed in scale_x_continuous() and the
corresponding scale_y_continuous(). We modified one subcomponent, breaks, by setting it to a sequence
from 10 to 80 with numeric values place at intervals of 10.

note: scale_x_discrete() is used to modify an x-axis with discrete values.

In this example we changed one subcomponent in theme() called axis.text.x and set it to an element_text()
that modifies the text by rotating it to an angle of 90 degrees and centering the text (vjust=0.5). Note: the
default for vjust is 1, which means the text will be vertically justified to the bottom. vjust=0 means the text
will be vertically justified to the top.

Figure 6: scale_x_continuous help page

theme(axis.text.x=element_text(angle=90, vjust=0.5))

Broadly speaking, theme() is used to make modifications that are not data related to the canvas (the plots and
the background). theme() is probably the most used component in GGPlot, and we could spend many lessons
going through all the subcomponents of theme().

A good place to find more information about components in GGPlot is the Help tab in the lower-right corner
of RStudio. The Help tab provides information directly from https://ggplot2.tidyverse.org/reference/, which is
the official webpage for GGPlot.

7 Getting rid of the grey (themes)

Figure 7: theme() component help page (yes, there is a lot there!)

6.2 For more help with components

https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/

The default GGplot theme, which uses the gray background, is not my favorite. Luckily, GGPlot makes it easy to
change the theme. The components that do this, called complete themes, are on this page. I will change to
the black-white theme:

A complete theme (e.g., theme_bw()) overwrites the whole theme for the canvas. This means it will overwrite
any theme changes you previously made. In this code, theme_bw() overwrite the theme() on the line before:

Part 4: Changing the theme

plot4 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum)) +

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity") +

scale_x_continuous(breaks = seq(from=10, to=80, by=10)) +

theme_bw() +

theme(axis.text.x=element_text(angle=90, vjust=0.5));

plot(plot4);

Figure 8: Setting the GGPlot theme to black and white

7.1 Complete themes must come before theme changes

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html

8 Adding a second plot (a linear regression)

Next, we will add a regression line to the canvas. This is done using the plotting component geom_smooth().

geom_smooth() adds data to the plot area so we need to use the mapping subcomponent to tell GGPlot
what data is being added to the plot area and how. In this case, we are mapping relHum vs. avgTemp.

Part 5: Changing the complete theme --- oops, undoes theme

plot5 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum)) +

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity") +

scale_x_continuous(breaks = seq(from=10, to=80, by=10)) +

theme(axis.text.x=element_text(angle=90, vjust=0.5)) +

theme_bw(); # this complete theme change will remove the theme change above

plot(plot5);

Figure 9: The complete theme change removed the theme change above it (the axis labels are no longer at 90 degrees)

We also add the method subcomponent to geom_smooth() to set the smoothing method we will use on the
data. In this case, linear model (lm).

Part 6: Adding a regression line

plot6 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum)) +

geom_smooth(mapping=aes(x=avgTemp, y=relHum),

method="lm") +

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity") +

scale_x_continuous(breaks = seq(from=10, to=80, by=10)) +

theme_bw() +

theme(axis.text.x=element_text(angle=90, vjust=0.5));

plot(plot6);

Figure 10: Adding a linear model component

8.1 Overlapping plots

When two plots overlap, as the linear model and the scatterplot do in Figure 10, the component that is added
later to the ggplot() canvas overlaps the earlier component. So, in the above case, the linear model overlaps
the scatterplot.

To have the scatterplot overlap the linear model, just switch the two components around:

Part 7: Reversing the overlapping plots

plot7 = ggplot(data=weatherData) +

geom_smooth(mapping=aes(x=avgTemp, y=relHum),

method="lm") +

geom_point(mapping=aes(x=avgTemp, y=relHum)) +

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity") +

scale_x_continuous(breaks = seq(from=10, to=80, by=10)) +

theme_bw() +

theme(axis.text.x=element_text(angle=90, vjust=0.5));

plot(plot7);

Figure 11: Switching the order of the components to change which plot is on top

9 Application

A) Create a script file names app2-01.r in your RStudio Project’s scripts folder

B) Looking at the GGPlot cheat sheet (or the GGPlot functions page) from Section 3 answer the following in
comments in app2-01.r:
1. What component (function) would be used to create a text plot?
2. What component would you use to change the breaks on the x-axis if the values were in date format?

C) Create a scatterplot in GGPlot in your script:
1. Create a scatterplot of stnPressure vs windSpeed using the data from Lansing2016NOAA.csv
2. Add a title and labels the axes appropriately
3. Change the plot theme to one of your choice
4. Change the angle of the stnPressure axis labels to 45 degrees
5. Change the stnPressure breaks to go up by 0.1
6. Have the wind-speed axis only display three values: 3, 12, 21
7. Add a linear regression of stnPressure vs windSpeed that appears behind the scatterplot
8. Challenge: Use the limits argument in scale_x_continuous and scale_y_continuous to remove the top and

right parts of the plot where there are only a couple points.
• limits is set equal to a vector with two values – so limits = c(0,100) would mean the axis would go

from 0 to 100

Save the script as app2-01.r in your scripts folder and email your Project Folder to Charlie Belinsky at
belinsky@msu.edu.

Instructions for zipping the Project Folder are here.

If you have any questions regarding this application, feel free to email them to Charlie Belinsky at
belinsky@msu.edu.

Answer the following in comments inside your application script:
1. What was your level of comfort with the lesson/application?
2. What areas of the lesson/application confused or still confuses you?
3. What are some things you would like to know more about that is related to, but not covered in, this lesson?

10 Trap: Putting the (+) on the next line

9.1 Questions to answer

https://qfcatmsu.github.io/FundProgUsingR/lessons/1-01-RStudioProjectsSetup.html#sec-zip-folder
https://qfcatmsu.github.io/FundProgUsingR/lessons/1-01-RStudioProjectsSetup.html#sec-zip-folder

The (+) commands strings together the components of a GGPlot. A common mistake is to put the (+) at the
beginning of the following line:

This will result in an error and a surprisingly wise assessment of the problem from the R debugger.

The reason for this error is that R thinks this line:

is a fully-formed and completed command

Trap: Putting (+) is the wrong place

plotA = ggplot(data=weatherData)

+ geom_point(mapping=aes(x=avgTemp, y=relHum))

+ labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity")

+ scale_x_continuous(breaks = seq(from=10, to=80, by=10))

+ theme(axis.text.x=element_text(angle=90, vjust=0.5));

plot(plotA);

Figure 12: Error when putting the (+) on the next line

plotA = ggplot(data=weatherData)

And R does not understand why the next line starts a new command with a (+)

A (+) at the end of a line tells R to append the next line to the current line. A (+) at the beginning of a line
tells R to perform the mathematical operation addition.

+ geom_point(mapping=aes(x=avgTemp, y=relHum))

